Comparision of Neural Algorithms for Funchtion Approximation
نویسندگان
چکیده
منابع مشابه
Efficient Approximation Algorithms for Point-set Diameter in Higher Dimensions
We study the problem of computing the diameter of a set of $n$ points in $d$-dimensional Euclidean space for a fixed dimension $d$, and propose a new $(1+varepsilon)$-approximation algorithm with $O(n+ 1/varepsilon^{d-1})$ time and $O(n)$ space, where $0 < varepsilonleqslant 1$. We also show that the proposed algorithm can be modified to a $(1+O(varepsilon))$-approximation algorithm with $O(n+...
متن کاملConstructive Neural Network Algorithms for Function Approximation Tasks
The generalization capability and training time of conventional neural networks depend on their architecture. In conventional neural networks, we have to define the architecture prior to training but in constructive neural network (CoNN) algorithms the network architecture is constructed during the training process. This paper presents an overview of CoNN algorithms that constructing feedforwar...
متن کاملComparision of profile retrieval algorithms for MAX-DOAS
Introduction Conclusions References Tables Figures
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Applied Sciences
سال: 2002
ISSN: 1812-5654
DOI: 10.3923/jas.2002.288.294